

 The Many APIs Of Gaming On
Proton

by Arek Hiler

@ivyl@treehouse.systems

ivyl @ libera & oftc

Proton Janitor @

In computing, an emulator is hardware or software that enables
one computer system (called the host) to behave like another
computer system (called the guest). An emulator typically enables
the host system to run software or use peripheral devices designed
for the guest system. Emulation refers to the ability of a computer
program in an electronic device to emulate (or imitate) another
program or device.

- Wikipedia

In software engineering, a compatibility layer is an
interface that allows binaries for a legacy or foreign system
to run on a host system. This translates system calls for the
foreign system into native system calls for the host system.
With some libraries for the foreign system, this will often be
sufficient to run foreign binaries on the host system.

- also Wikipedia

How Does Wine Work?

ld.so(8) System Manager's Manual ld.so(8)

NAME
 ld.so, ld-linux.so - dynamic linker/loader

SYNOPSIS
 The dynamic linker can be run either indirectly by running some dynami‐
 cally linked program or shared object (in which case no command-line
 options to the dynamic linker can be passed and, in the ELF case, the
 dynamic linker which is stored in the .interp section of the program is
 executed) or directly by running:

 /lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION
 The programs ld.so and ld-linux.so* find and load the shared objects
 (shared libraries) needed by a program, prepare the program to run, and
 then run it.

Wine is kinda like that but for PEs

wine foo.exe
● finds and loads ntdll.so (more on .so vs .dll later)
● calls __wine_main()
● wine → wine64-preloader (addr reservation) wine→
● inits environment (PEB, TEB, USD and other windowisms) and stacks
● starts wineserver (more on that later)
● loads foo.exe + imports
● loads ntdll.dll
● signal_start_thread() call_init_thunk() RtlUserThreadStart() → → →

entry_point()

PE <-> Unix

Syscalls

Syscalls On Windows

● A bunch of Nt*() functions, e.g.
NtDelayExecution(), NtSetEvent(), NtWriteFile(),
NtGdiCreateBitmap() that do the syscall for you.

● No contract wrt SYSENTER / INT 0x80 / etc.

“Sycalling” Into The Unix Side
0x17000d2f0 mov r10, rcx | ulong sym.ntdll.dll_NtClose(ulong Handle)
0x17000d2f3 mov eax, 0x15 |
 |
 | {
0x17000d2f8 test byte [0x7ffe0308], 1 | if ((usd->SystemCall & 1) == 0) {
0x17000d300 jne 0x17000d305 |
0x17000d302 syscall | return syscall(0x15);
0x17000d304 ret |
 | }
0x17000d308 call qword [0x7ffe1000] | return -_wine_syscall_dispatcher(0x15);
 | }

*0x7ffe0308 == user_shared_data→SystemCall == 1
*0x7ffe1000 == =_wine_syscall_dispatcher() (one page after user_shared_data)

__wine_syscall_dispatcher()

● stores context in amd64_thread_data()->syscall_frame (amd64_thread_data() is TEB->GdiTebBatch)

● switches thread’s stack from the “user space” one (Windows) to the “kernel” one (UNIX)

● figures out what to call on the UNIX side using the syscall number and System Service Descriptor
Table (see syscalls[] and ntdll_init_syscalls())

● calls the UNIX function it has found and takes the result

● restores the context / Windows stack

● returns to the syscall thunk

Real Syscalls
● Some apps try to be sneaky and either hardcode the

syscall numbers or extract them from the thunks.

● Proton installs a filter using seccomp-bpf that
captures all syscalls in the PE address range.

● We get a sigsys and our handler dispatches the
syscall.

Non-Syscall Unix Bits
● The Unix Part lives in a .so and exports a table of calls.

● The loader knows how to load it along the .dll.

● It has a table of the calls accessible via NtQueryVirtualMemory()
with magic MemoryWineUnixFuncs. Done once in DllMain().

● __wine_unix_call() - stripped down and optimized
__wine_syscall_dispatcher() that can be called directly.

wineserver

Responsibilities of Wineserver
● “Kernel-like”. Single-threaded. Accessible by the Unix side.

● Keeping track of processes / threads, querying their information, suspending /
resuming.

● Win32 clipboard, atoms, file descriptor management, window tracking.

● HANDLE management.

● Async IO, sockets.

● Registry access.

● Change notifications.

● Shared memory.

The Unix-backed APIs
40 DLLs

Synchronization
Multiple implementations backing Nt*Event(), Nt*Semaphore(), NtWaitFor*()
syscalls.

● serversync – wineserver is the mediator, each operation = IPC

● esync – eventfd-based, requires high nofile, not everything is or can be
implemented accurately, e.g. waiting on all

● fsync – futex-based, futex_waitv, no dependency on nofile, similar limitations
to esync

● winesync/fastsync/ntsync – upcoming Linux kernel driver

Audio – MMDevice API Backends

Multiple Unix backends:

● winepulse.drv – PulseAudio, including PipeWire via pipewire-pulse

● winealsa.drv - ALSA ¯_(ツ)_/¯

● wineoss.drv – OSS, BSD folks rejoice!

● winecoreaudio.drv – for OSX users

Implements/stubs things like ISpatialAudio and other things you can
query from MMDevice.

3D - Vulkan – winevulkan.dll
● make_vulkan written in Python

● parses vk.xml and generates both Unix side thunks
and PE thunks that calls them

● if conversion cannot be handled automatically there
are handwoven wrappers

● extension mapping, e.g. vkCreateWin32SurfaceKHR →
vkCreateXlibSurfaceKHR (more on that later)

3D - OpenGL – openg32.dll
● make_opengl written in Perl

● parses gl.xml and winegl.xml (unofficial
extensions) and generates both Unix side
thunks and PE thunks that calls them

● if conversion cannot be handled automatically
there are handwoven wrappers

Windows, Events & Basic Graphics

Multiple Unix backends: winex11.drv, winewayland.drv, wineandroid.drv, winemac.drv
 exposed on the PE side mostly by win32u.dll

Provides implementation behind:
● Graphics Device Interface - Nt*Gdi*() - bitmap creation, device context, blitting,

drawing
● keyboard and mouse handling – NtUser*Keyboard*(), NtUser*Cursor*()
● window creation and management – NtUserSetFocus(), NtUserCreateWindowEx()
● display management – populating registry, NtUserChangeDisplaySettings()
● platform specific WSI – OpenGL’s wgl*(), Vulkan’s vkCreateWin32SurfaceKHR and

related

winex11.drv
● Mostly pain and misery.

● Mapping windowing behavior between two APIs
that are each almost 40 years old.

● A lot of things are up to Window Managers.

● There’s a humorous talk from XDC 2023 on this.

winegstreamer.dll
● Wraps native decoders / encoders and

expose them to the PE side.

● Uses GStreamer.

● Base for our Quartz and Media Foundation
implementations.

Controllers – winebus.sys
● Multiple Unix backends: SDL, udev (hidraw/evdev),

iohid.

● Exposes everything as HID devices – creates a faux
descriptor and reports when we don’t have hidraw
access.

● There’s special, hidden HID device for XInput
consumption.

Networking
● ntdll.dll – NtDeviceIoControlFile() for sockets on top of

glibc and socket creation mediated via wineserver

● ws2_32.dll – uses ioctls, and unixlib for getaddr/gethost

● dnsapi.dll – DNS stuff, queries built on top of libresolve

● bcrypt.dll – provider of cryptographic functions (hashes,
symmetric and asymetric encryption) built on top of gnutls

The PE APIs
643 DLLs

msvcrt.dll / ucrtbase.dll
● C / C++ Runtime Library
● fwrite(), malloc()

● cos(), atan2()
● std::

Audio

Everything implemented on top of mmdevapi.

XAudio – uses FAudio

DSound - DirectSound

Controllers

● DInput – based purely on top of HID. Should work
on Windows. I don’t think anyone has tried.

● XInput – uses special devices we expose. Won’t
work on Windows.

● Windows Gaming Input – build on top of DInput &
HID, should work on Windows.

wined3d
● DirectX 1-11 on top of OpenGL (and Vulkan)

● tried and tested

● people are using it on Windows for better
compatibility with older games

DXVK – DirectX 9-11 Over Vulkan
● Independent from Wine.

● With Proton since the beginning.

● Just a PE, runs on Windows. People do use it.

● DXVK-Native for people who want DirectX on Linux.

vkd3d-proton
● Originally forked from WineHQ’s vkd3d.

● Depends on DXVK’s DXGI.

● Solid DirectX 12 implementation that’s
running modern AAA games.

vkd3d
● The original project.
● Slowly catches up on DirectX 12 over Vulkan

front.

● Used in Proton for the libvkd3d-shader part to
provide d3dcompiler*.dll.

DXVK-NVAPI
● Provides implementation of Nvidia’s NVAPI.

● Included with the Windows drivers.

● Game integration assumes DLLs to be present if GPU
vendor == NVIDIA.

● So we had to fake all Nvidia GPUs to be AMD RX480.

● Integrates with DXVK and vkd3d-proton.

AMDAGS & ATIADLXX
● AMD’s counterparts of NVAPI.
● Implemented in Proton’s Wine.

● Many many versions of the API.
● Native DLLs ship with the game and like to

break things.

That’s it! Now you have a good
idea how Wine / Proton works.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

